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Spatial transformation of coherent optical waves with orbital morphologies
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We theoretically verify that converting the Hermite-Gaussian modes into the Laguerre-Gaussian can lead to
the spatial morphologies of the two-dimensional (2D) coherent states to be transformed from Lissajous figures
to trochoidal curves. With this transformational relationship, we experimentally generate various structured
light beams by exploiting a cylindrical-lens mode converter to transform the optical Lissajous modes. The
present investigation manifests a notable method to generate optical coherent waves with various orbital spatial
morphologies.
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I. INTRODUCTION

Numerous recent research on optical spatial modes has
come out in modern physics [1–3] ranging from classical
simulators of quantum entanglement [4–6] to parallel infor-
mation [7,8]. The transverse Hermite-Gaussian (HG) modes
are emitted by most laser cavities and are formally identical to
the eigenstates of a two-dimensional (2D) quantum harmonic
oscillator [9]. Consequently, HG modes are often used to
represent the spatial quantum photon states within the paraxial
regime [10]. Recently, a variety of quantum Lissajous states
formed by the coherent superposition of HG eigenstates
has been analogously generated from the degenerate laser
resonators, which exhibit wave patterns resembling Lissajous
figures [11]. Constructing wave states with spatial morpholo-
gies well localized on the particle orbits has become one of
the most fundamental features in different branches of physics
such as solid-state physics, nuclear and atomic physics, and
laser physics [12,13].

Likewise, the Laguerre-Gaussian (LG) modes correspond
to circular eigenstates of the 2D harmonic oscillator and play
a prominent role in singular optics [14]. In the early 1990s,
it was shown that a high-order HG mode can be converted
into an LG mode by using astigmatic lenses [15,16]. Since
this discovery, researchers have made tremendous progress
in manipulation [17], detection [18], and application [19,20]
of the orbital-angular-momentum states of light. The gen-
eration of optical coherent states with intensities localized
on intriguing periodic orbits might be an enabling tool to
explore further possibilities for creating a new class of quantum
light-matter-entangled states.

In this work, we exploit the algebraic technique of quan-
tum operators to explore the transformation of the spatial
morphologies for the optical Lissajous states by converting
their HG components into the corresponding LG modes. It is
verified that the optical Lissajous states can be transformed
into the optical trochoidal states with the spatial morphologies
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corresponding to the trochoidal curves. We further employ
the optical Lissajous modes and a π/2-cylindrical-lens mode
converter to realize the spatial transformation for generating
optical trochoidal states. The present investigation manifests
an intriguing nonclassical behavior of the coherent optical
waves.

II. THEORETICAL ANALYSIS

The optical coherent wave is a superposition of degenerate
laser modes and can provide a general description for a laser
system exhibiting ray behavior. One aim of our work is to
explore the spatial geometry of the optical coherent wave
related to the HG and LG modes. The wave function of HG
mode with longitudinal index n3 and transverse indices n1 and
n2 in Cartesian coordinates (x, y, z) is given by [9]

�(HG)
n1,n2,n3

(x,y,z) = �(HG)
n1,n2

(x,y,z)ei(n1+n2+1)θG(z)e−iζn1 ,n2 ,n3 (x,y,z),
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where w(z) = wo

√
1 + (z/zR)2, ζn1,n2,n3 (x,y,z) =

kn1,n2,n3z[1 + (x2 + y2)/2(z2 + z2
R)], w0 is the beam radius

at the waist, zR = πw2
0/λ is the Rayleigh range, Hn(·) are

the Hermite polynomials, kn1,n2,n3 is the wave number, and
θG(z) = tan−1(z/zR) is the Gouy phase. In terms of the
effective cavity length L, the wave number kn1,n2,n3 is given by

kn1,n2,n3L = π [n3 + (n1 + n2)(�fT /�fL)], (3)

where �fL = c/2L is the longitudinal mode spacing and �fT

is the transverse mode spacing. When the ratio �fT /�fL

is close to a simple fractional, it has been shown that the
longitudinal-transverse coupling usually leads to the frequency
locking among different transverse modes with the help of
different longitudinal orders [11]. Consequently, when the
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mode-spacing ratio �fT /�fL is locked to a rational number
P/Q, the group of the HG modes �

(HG)
n1+pk,n2∓qk,n3+sk with k =

. . . , − 2, − 1,0,1,2, . . . can be found to constitute a family of
frequency degenerate states, provided that the given integers
(p, q, s) obey the equation s + (p ∓ q)(P/Q) = 0. For conve-
nience, the integers p and q are taken to be positive. The equa-
tion s + (p ∓ q)(P/Q) = 0 indicates that p ∓ q needs to be an
integral multiple of Q, i.e., p ∓ q = KQ, where K is an integer.

With the coherent-state representation [11], the optical
coherent wave formed by the family of the degenerated HG
modes �

(HG)
n1+pk,n2∓qk,n3+sk can be expressed as

∣∣�±p,q,s
n̄1,n̄2,n̄3

(γ )
〉 =

M∑
k=−M

CM,ke
ikγ

∣∣�(HG)
n̄1+pk,n̄2∓qk,n̄3+sk

〉
, (4)

where

CM,k = 2−M

(
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M + k

)−1/2

is the weighting coefficient,(
n

k

)
= n!

k!(n − k)!

represents the binomial coefficient, the parameter γ = pφ1 ∓
qφ2 is the relative phase between various HG modes at z = 0,
φ1 and φ2 are the phase factors related to the wave pattern,
and n̄1, n̄2, and n̄3 are the mean orders. With the expression of
Eq. (1), the HG coherent wave can be expressed as∣∣�±p,q,s

n̄1,n̄2,n̄3
(γ )

〉 = ∣∣�±p,q
n̄1,n̄2

(γ )
〉
ei(n̄1+n̄2+1)θG(z)e−iζn̄1 ,n̄2 ,n̄3 (x,y,z) (5)

with

∣∣�±p,q
n̄1,n̄2

(γ )
〉 =

M∑
k=−M

CM,ke
ik(p∓q)θG(z)eikγ

∣∣�(HG)
n̄1+pk,n̄2∓qk

〉
. (6)

The wave pattern of the coherent state |�±p,q
n̄1,n̄2

(γ )〉 has been
shown to be localized on the Lissajous parametric surface:
x(ϑ,z) = Re[X(ϑ,z)]; y(ϑ,z) = Re[Y (ϑ,z)], where X(ϑ,z) =√

n̄1w(z)ei[qϑ−θG(z)−φ1], Y (ϑ,z) = √
n̄2w(z)ei[±pϑ−θG(z)−φ2],

0 � ϑ � 2π and −∞ � z � ∞. Explicitly, the Lissajous
parametric surface is formed by the Lissajous curves with
the phase factor varying with the position z. Note that these
Lissajous orbits are invariant with respect to changes in the
phases φ1 and φ2, provided that the quantity γ = pφ1 ∓ qφ2

is conserved modulo 2π .
It had been experimentally realized in optics that an HG

mode could be transformed with cylindrical lenses into an
LG mode. As discussed above, the coherent states formed
by the HG modes represent the quantum Lissajous states
that display the spatial morphologies concentrating on the
Lissajous figures. It is intriguing to explore the change of
the spatial morphology for a Lissajous coherent state passing
through cylindrical lenses that transforms each HG component
into the corresponding LG mode. Replacing the HG modes
with the corresponding LG modes in Eq. (6), the coherent
state formed by LG modes is given by

∣∣�±p,q
n̄1,n̄2

(γ )
〉 =

M∑
k=−M

CM,ke
ik(p∓q)θG(z)eikγ

∣∣�(LG)
n̄1+pk,n̄2∓qk

〉
. (7)

Since the Hermite-Gaussian modes of the laser resonator
are isomorphic to the eigenstates of the 2D quantum harmonic
oscillator, we can use the quantum operator algebra of the
harmonic oscillator to deduce the subtle relationship between
the Hermite-Gaussian and Laguerre-Gaussian coherent states.
With the algebra of the ladder operators, the relationship
between the LG and HG modes can be given by

∣∣�(LG)
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〉 = Û
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where N = n1 + n2 = m1 + m2 and
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(9)

Using the correspondence between classical canonical
transform and quantum unitary transform [13] and the isomor-
phic relation between SU(2) algebra and SO(3) algebra, the
LG coherent state |�±p,q

n̄1,n̄2
(γ )〉 can be verified to be exactly

localized on the parametric surface: x(ϑ,z) = Re[X̃(ϑ,z)];
y(ϑ,z) = Re[Ỹ (ϑ,z)], where X̃(ϑ,z) = (1/

√
2)[X(ϑ,z) −

Y (ϑ,z)], Ỹ (ϑ,z) = (i/
√

2)[X(ϑ,z) + Y (ϑ,z)], 0 � ϑ � 2π ,
and −∞ � z � ∞. Consequently, the spatial morphologies of
the LG coherent states |�±p,q

n̄1,n̄2
(γ )〉 correspond to the trochoidal

orbits:

x(ϑ,z) = w(z){√n̄1 cos[qϑ − θG(z) − φ1]

−√
n̄2 cos[±pϑ − θG(z) − φ2]} (10a)

y(ϑ,z) = w(z){√n̄1 sin[qϑ − θG(z) − φ1]

+√
n̄2 sin[±pϑ − θG(z) − φ2]}. (10b)

Intriguingly, changing the eigenstate components in the
coherent state from the HG modes |�(HG)

n1,n2
〉 to the LG modes

|�(LG)
n1,n2

〉 can bring about the corresponding orbits to transform
from Lissajous figures to trochoidal curves. This transfor-
mational relationship indicates that the stationary Lissajous
state |�±p,q

n̄1,n̄2
(γ )〉 in Eq. (6) can be converted into a stationary

trochoid state with cylindrical lenses. Note that the trochoidal
orbit in Eq. (10) can be found to be a hypotrochoid or an
epitrochoid, depending on the sign ± in the LG coherent states
|�±p,q

n̄1,n̄2
(γ )〉.

III. EXPERIMENTAL REALIZATION

The stationary Lissajous states |�±p,q
n̄1,n̄2

(γ )〉 have been anal-
ogously generated from various degenerate laser cavities for
several hundred different (p,q) [11]. Here we employ the laser
modes associated with stationary Lissajous states to realize the
transformational relationship between optical Lissajous states
and optical trochoid states. Figure 1 depicts the experimental
setup for transforming the Lissajous laser modes into the
trochoid laser modes with cylindrical lenses. The present
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FIG. 1. (Color online) Experimental setup for transforming the Lissajous laser modes into the trochoid laser modes with cylindrical lenses.

laser cavity was composed of a spherical mirror and a large-
aperture gain medium. The spherical mirror was a 10-mm
radius-of-curvature concave mirror with antireflection coating
at the pumping wavelength on the entrance face (R < 0.2%),
high-reflection coating at lasing wavelength (R > 99.8%), and
high-transmission coating at the pumping wavelength on the
other surface (T > 95%). The gain medium was an a-cut
2.0 at.% Nd:YVO4 crystal with the length of 2 mm and the
cross section of 8 × 8 mm2. One planar surface of the laser
crystal was coated for antireflection at the pumping and lasing
wavelengths; the other surface was coated to be an output
coupler with the reflectivity of 99%. The pump source was a
2-W 809-nm fiber-coupled laser diode with a core diameter of
100 µm. A coupling lens was used to focus the pump beam
into the laser crystal with a large off-axis displacement. It has
been found that the longitudinal-transverse coupling and the
mode-locking effect in large-Fresnel-number spherical laser
cavities usually drive the laser modes to be the coherent waves

that are transversely localized on the Lissajous figures with
the relative phase continuously varying with the longitudinal
direction. The generated Lissajous laser mode was reimaged
into a cylindrical-lens mode converter to perform the beam
transformation. The focal length of the cylindrical lenses was
f = 25 mm; the distance was precisely adjusted to be

√
2f for

the operation of the π/2 converter. To image the transformed
transverse pattern, the transformed laser beam was directly
projected on a paper screen at a distance of ∼50 cm behind the
cylindrical mode converter and the scattered light was captured
by a digital camera.

Figures 2(a)–2(e) and Figs. 2(a′)–2(e′) show the experi-
mental results for the input Lissajous laser modes |�±p,q

n̄1,n̄2
(γ )〉

with the positive sign and the corresponding output laser
modes converted from cylindrical lenses, respectively. The
spatial morphologies of the laser modes can be clear seen
to be transformed from Lissajous figures to hypotrochoidal
curves. The related orbits for the transformed laser modes

FIG. 2. (Color online) [(a)−(e)] Input Lissajous laser modes. [(a′)−(e′)] Output hypotrochoidal laser modes. [(a′′)−(e′′)] Related periodic
orbits calculated with Eq.(13). For detailed descriptions for the parameters, see the text.

043801-3



Y. F. CHEN, Y. C. LIN, K. F. HUANG, AND T. H. LU PHYSICAL REVIEW A 82, 043801 (2010)

FIG. 3. (Color online) [(a)−(e)] Input Lissajous laser modes. [(a′)−(e′)] Output epitrochoidal laser modes. [(a′′)−(e′′)] Related periodic
orbits calculated with Eq.(13). For detailed descriptions for the parameters, see the text.

can be calculated with Eq. (10) and are illustrated in
Figs. 2(a′′)–2(e′′). The parameters for fitting to the experimen-
tal results are (p,q) = (1,4), (n̄1,n̄2) = (45,245), (φ1,φ2) =
(π/2,0) for Fig. 2(a′′); (p,q) = (2,5), (n̄1,n̄2) = (40,219),
(φ1,φ2) = (π/4,0) for Fig. 2(b′′); (p,q) = (1,8), (n̄1,n̄2) =
(45,318), (φ1,φ2) = (0,0) for Fig. 2(c′′); (p,q) = (1,11),
(n̄1,n̄2) = (42,229), (φ1,φ2) = (0,0) for Fig. 2(d′′); (p,q) =
(2,9), (n̄1,n̄2) = (50,272), (φ1,φ2) = (π/4,0) for Fig. 2(e′′).
Experimentally, the parameters (p, q) are changed according
to different cavity length, and (n̄1, n̄2) are estimated for varying
degree of off-axis pumping. The phase factor(φ1, φ2), related
to the initial conditions of the coherent waves, is dominated
by the laser cavity for minimum mode radius.

Figures 3(a)–3(e) and Figs. 3(a′)–3(e′) show the experi-
mental results for the input Lissajous laser modes |�±p,q

n̄1,n̄2
(γ )〉

with negative sign and the corresponding output laser modes
converted from cylindrical lenses, respectively. Instead of
hypotrochoids, the spatial morphologies of the laser modes
are transformed from Lissajous figures to epitrochoidal curves
due to the negative sign of ω1/ω2. Figures 3(a′′)–3(e′′)
depict the corresponding orbits calculated with Eq. (10). The
parameters for fitting to the experimental results are (p,q) =
(1,6), (n̄1,n̄2) = (44,240), (φ1,φ2) = (π/2,0) for Fig. 3(a′′);
(p,q) = (2,5), (n̄1,n̄2) = (125,180), (φ1,φ2) = (π/4,0) for
Fig. 3(b′′); (p,q) = (6,8), (n̄1,n̄2) = (80,245), (φ1,φ2) =
(0,0) for Fig. 3(c′′); (p,q) = (5,9), (n̄1,n̄2) = (80,125),

(φ1,φ2) = (0,0) for Fig. 3(d′′); (p,q) = (3,11), (n̄1,n̄2) =
(160,250), (φ1,φ2) = (0,0) for Fig. 3(e′′). More importantly,
the spatial morphologies of Lissajous states |�±p,q

n̄1,n̄2
(γ )〉 are

independent of the sign ±; however, the sign difference can
be manifested from the spatial morphologies of the beams
transformed by cylindrical lenses.

IV. CONCLUSIONS

In conclusion, we have verified that the spatial morpholo-
gies of the optical Lissajous states can be transformed into the
optical trochoidal states with spatial morphologies correspond-
ing to the trochoidal curves by converting the HG components
into the corresponding LG modes. We have further exploited
the optical Lissajous modes and a π/2-cylindrical-lens mode
converter to perform the spatial transformation in analogous
way and to generate the optical trochoidal modes. Experi-
mental realization confirmed a notable method to generate the
spatial coherent states with various orbital morphologies. The
present method is expected to be constructive for investigating
the spatial transformation of optical coherent waves.

ACKNOWLEDGMENTS

This work is supported by the National Science Council of
Taiwan (Contract No. NSC-97-2112-M-009-016-MY3).

[1] D. Dragoman and M. Dragoman, Prog. Quantum Electron. 23,
131 (1999).

[2] D. Dragoman and M. Dragoman, Quantum-Classical Analogies
(Springer, Berlin, 2004).

[3] S. Longhi, Laser & Photon. Rev. 3, 243 (2009).
[4] K. Wagner et al., Science 321, 541 (2008).
[5] J. Fu et al., Phys. Rev. A 70, 042313 (2004).
[6] N. K. Langford et al., Phys. Rev. Lett. 93, 053601 (2004).

043801-4

http://dx.doi.org/10.1016/S0079-6727(99)00007-5
http://dx.doi.org/10.1016/S0079-6727(99)00007-5
http://dx.doi.org/10.1002/lpor.200810055
http://dx.doi.org/10.1126/science.1159663
http://dx.doi.org/10.1103/PhysRevA.70.042313
http://dx.doi.org/10.1103/PhysRevLett.93.053601


SPATIAL TRANSFORMATION OF COHERENT OPTICAL . . . PHYSICAL REVIEW A 82, 043801 (2010)

[7] M. Lassen et al., Phys. Rev. Lett. 98, 083602 (2007).
[8] G. F. Calvo and A. Picón, Phys. Rev. A 77, 012302 (2008).
[9] G. Nienhuis and L. Allen, Phys. Rev. A 48, 656 (1993).

[10] G. F. Calvo, A. Picón, and R. Zambrini, Phys. Rev. Lett. 100,
173902 (2008).

[11] Y. F. Chen et al., Phys. Rev. Lett. 96, 213902 (2006).
[12] C. Lena, D. Delande, and J. C. Gay, Europhys. Lett. 15, 697

(1991).
[13] T. H. Lu et al., Phys. Rev. Lett. 101, 233901 (2008).

[14] M. S. Soskin and M. V. Vasnetsov, Prog. Opt. 42, 219 (2001).
[15] E. Abramochkin and V. Volostnikov, Opt. Commun. 83, 123

(1991).
[16] M. W. Beijersbergen et al., Opt. Commun. 96, 123 (1993).
[17] D. Akamastu and M. Kozuma, Phys. Rev. A 67, 023803 (2003).
[18] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and

J. Courtial, Phys. Rev. Lett. 88, 257901 (2002).
[19] H. He et al., Phys. Rev. Lett. 75, 826 (1995).
[20] D. G. Grier, Nature 424, 810 (2003).

043801-5

http://dx.doi.org/10.1103/PhysRevLett.98.083602
http://dx.doi.org/10.1103/PhysRevA.77.012302
http://dx.doi.org/10.1103/PhysRevA.48.656
http://dx.doi.org/10.1103/PhysRevLett.100.173902
http://dx.doi.org/10.1103/PhysRevLett.100.173902
http://dx.doi.org/10.1103/PhysRevLett.96.213902
http://dx.doi.org/10.1209/0295-5075/15/7/001
http://dx.doi.org/10.1209/0295-5075/15/7/001
http://dx.doi.org/10.1103/PhysRevLett.101.233901
http://dx.doi.org/10.1016/0030-4018(91)90534-K
http://dx.doi.org/10.1016/0030-4018(91)90534-K
http://dx.doi.org/10.1016/0030-4018(93)90535-D
http://dx.doi.org/10.1103/PhysRevA.67.023803
http://dx.doi.org/10.1103/PhysRevLett.88.257901
http://dx.doi.org/10.1103/PhysRevLett.75.826
http://dx.doi.org/10.1038/nature01935

